JAMES McCLAVE | TERRY SINCICH

TWELFTH EDITION

This page intentionally left blank

Available in MyStatLab ${ }^{\text {TM }}$ for Your Introductory Statistics Courses

MyStatLab is the market-leading online resource for learning and teaching statistics.

Leverage the Power of StatCrunch

MyStatLab leverages the power of StatCrunch-powerful, web-based statistics software. Integrated into MyStatLab, students can easily analyze data from their exercises and etext.

In addition, access to the full online community allows users to take advantage of a wide variety of resources and applications at www.statcrunch.com.

Bring Statistics to Life
Virtually flip coins, roll dice, draw cards, and interact with animations on your mobile device with the extensive menu of experiments and applets in StatCrunch. Offering a number of ways to practice resampling procedures, such as permutation tests and bootstrap confidence intervals, StatCrunch is a complete and modern solution.

Real-World Statistics

MyStatLab video resources help foster conceptual understanding. StatTalk Videos, hosted by fun-loving statistician Andrew Vickers, demonstrate important statistical concepts through interesting stories and real-life events. This series of 24 videos includes assignable questions built in MyStatLab and an instructor's guide.

StatTalk: Regression

APPLET CORRELATION

Applet	Concept Illustrated	Description	Applet Activity
Sample from a population	Assesses how well a sample represents the population and the role that sample size plays in the process.	Produces random sample from population from specified sample size and population distribution shape. Reports mean, median, and standard deviation; applet creates plot of sample.	4.4, 192; 4.6, 207
Sampling distributions	Compares means and standard deviations of distributions; assesses effect of sample size; $;$ illustrates undbiasedness.	Simulates repeatedly choosing samples of a fixed size n from a population with specified sample size, number of samples, and shape of population distribution. Applet reports means, medians, and standard deviations; creates plots for both.	4.7, 236; 4.8, 236

Long-run probability demonstrations illustrate the concept that theoretical probabilities are long-run experimental probabilities.

Simulating probability of rolling a 6

Investigates relationship between theoretical and experimental probabilities of rolling 6 as number of die rolls increases.

Reports and creates frequency histogram for each outcome of each simulated roll of a fair die. Students specify number of rolls; applet calculates and plots proportion of 6 s .

Simulating probability of rolling a 3 or 4	Investigates relationship between theoretical and experimental probabilities of rolling 3 or 4 as number of die rolls increases.	Reports outcome of each simulated roll of a fair die; creates frequency histogram for outcomes. Students specify number of rolls; applet calculates and plots proportion of 3 s and 4 s .	3.3, 138; 3.4, 139
Simulating the probability of heads: fair coin	Investigates relationship between theoretical and experimental probabilities of getting heads as number of fair coin flips increases.	Reports outcome of each fair coin flip and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots proportion of heads.	3.2,127; 4.2, 179
Simulating probability of heads: unfair coin $(P(H)=.2)$	Investigates relationship between theoretical and experimental probabilities of getting heads as number of unfair coin flips increases.	Reports outcome of each flip for a coin where heads is less likely to occur than tails and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots the proportion of heads.	4.3, 192
Simulating probability of heads: unfair coin $(P(H)=.8)$	Investigates relationship between theoretical and experimental probabilities of getting heads as number of unfair coin flips increases.	Reports outcome of each flip for a coin where heads is more likely to occur than tails and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots the proportion of heads.	4.3, 192
Simulating the stock market	Theoretical probabilities are long run experimental probabilities.	Simulates stock market fluctuation. Students specify number of days; applet reports whether stock market goes up or down daily and creates a bar graph for outcomes. Calculates and plots proportion of simulated days stock market goes up.	4.5, 192
Mean versus median	Investigates how skewedness and outliers affect measures of central tendency.	Students visualize relationship between mean and median by adding and deleting data points; applet automatically updates mean and median.	2.1, 61; 2.2, 61; 2.3, 61

Applet	Concept Illustrated	Description	Applet Activity
Standard deviation	Investigates how distribution shape and spread affect standard deviation.	Students visualize relationship between mean and standard deviation by adding and deleting data points; applet updates mean and standard deviation.	2.4, 68; 2.5, 69; 2.6, 69; 2.7, 91
Confidence intervals for a proportion	Not all confidence intervals contain the population proportion. Investigates the meaning of 95% and 99% confidence.	Simulates selecting 100 random samples from the population and finds the 95% and 99% confidence intervals for each. Students specify population proportion and sample size; applet plots confidence intervals and reports number and proportion containing true proportion.	5.5, 279; 5.6, 280
Confidence intervals for a mean (the impact of confidence level)	Not all confidence intervals contain the population mean. Investigates the meaning of 95% and 99% confidence.	Simulates selecting 100 random samples from population; finds 95% and 99% confidence intervals for each. Students specify sample size, distribution shape, and population mean and standard deviation; applet plots confidence intervals and reports number and proportion containing true mean.	5.1, 261; 5.2, 261
Confidence intervals for a mean (not knowing standard deviation)	Confidence intervals obtained using the sample standard deviation are different from those obtained using the population standard deviation. Investigates effect of not knowing the population standard deviation.	Simulates selecting 100 random samples from the population and finds the 95% z-interval and $95 \% \mathrm{t}$-interval for each. Students specify sample size, distribution shape, and population mean and standard deviation; applet plots confidence intervals and reports number and proportion containing true mean.	5.3, 271; 5.4, 271

Hypothesis tests for a proportion

Not all tests of hypotheses lead correctly to either rejecting or failing to reject the null hypothesis. Investigates the relationship between the level of confidence and the probabilities of making Type I and Type II errors.

Simulates selecting 100 random samples from population; calculates and plots z -statistic and P -value for each. Students specify population proportion, sample size, and null and alternative hypotheses; applet reports number and proportion of times null hypothesis is rejected at 0.05 and 0.01 levels.

Hypothesis tests for Not all tests of hypotheses lead correctly to a mean

Nother rejecting or failing to reject the null
hypothesis. Investigates the relationship between the level of confidence and the probabilities of making Type I and Type II errors.

Simulates selecting 100 random samples from population; calculates and plots t statistic and P-value for each. Students specify population distribution shape, mean, and standard deviation; sample size, and null and alternative hypotheses; applet reports number and proportion of times null hypothesis is rejected at both 0.05 and 0.01 levels.
6.1, 317; 6.2, 327; 6.3,327;

Correlation by eye	Correlation coefficient measures strength of linear relationship between two variables. Teaches user how to assess strength of a linear relationship from a scattergram.	Computes correlation coefficient r for a set of bivariate data plotted on a scattergram. Students add or delete points and guess value of r ; applet compares guess to calculated value.	9.2, 539
Regression by eye	The least squares regression line has a smaller SSE than any other line that might approximate a set of bivariate data. Teaches students how to approximate the location of a regression line on a scattergram.	Computes least squares regression line for a set of bivariate data plotted on a scattergram. Students add or delete points and guess location of regression line by manipulating a line provided on the scattergram; applet plots least squares line and displays the equations and the SSEs for both lines.	9.1,512

This page intentionally left blank

A FIRST COURSE IN STATISTICS

This page intentionally left blank

A FIRST COURSE IN
 STATISTICS

TWELFTH EDITION

James T. McClave

Info Tech, Inc.
University of Florida

Terry Sincich

University of South Florida

PEARSON

Editorial Director: Chris Hoag Editor in Chief: Deirdre Lynch Acquisitions Editor: Patrick Barbera Editorial Assistant: Justin Billing Program Manager: Tatiana Anacki Project Manager: Christine O'Brien Program Management Team Lead:

Karen Wernholm
Project Management Team Lead: Peter Silvia
Media Producer: Jean Choe
TestGen Content Manager: John Flanagan
MathXL Content Manager: Bob Carroll
Product Marketing Manager:Tiffany Bitzel
Field Marketing Manager: Andrew Noble
Marketing Assistant: Jennifer Myers
Senior Author Support/Technology
Specialist: Joe Vetere

Rights and Permissions Project Manager: Gina Cheselka
Procurement Specialist: Carol Melville
Associate Director of Design: Andrea Nix
Program Design Lead: Barbara Atkinson
Text Design: Integra
Composition: Integra
Illustrations: Integra
Cover Design: Studio Montage
Cover Images: Future Technology-Illustrator-Hong Li/Getty Images; Business people discussing the charts and graphs showing the results of their successful teamwork - Pressmaster/ Shutterstock; Woman using iPhone and iPad Mini-Ivanko80/Fotolia

Copyright © 2017, 2013, 2011, 2008 by Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgements of third party content appear on page xvi, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, MYSTATLAB, MYSTATLAB PLUS, MATHXL, LEARNING CATALYTICS, AND TESTGEN are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

McClave, James T.

A first course in statistics / James T. McClave, Info Tech, Inc., University of Florida, Terry
Sincich, University of South Florida.-Twelfth edition.
pages cm
ISBN 978-0-13-408062-8 ((pbk.))

1. Statistics. I. Sincich, Terry. II. Title.

QA276.M378 2017
519.5-dc23

2015027150
$12345678910-\mathrm{CRK}-18171615$

Contents

Preface xi
Applications Index xix
Chapter 1
Statistics, Data, and Statistical Thinking 1
1.1 The Science of Statistics 2
1.2 Types of Statistical Applications 3
1.3 Fundamental Elements of Statistics 5
1.4 Types of Data 9
1.5 Collecting Data: Sampling and Related Issues 11
1.6 The Role of Statistics in Critical Thinking and Ethics 16
Statistics in Action: Social Media Network Usage—Are You Linked In? 2
Using Technology: MINITAB: Accessing and Listing Data 25
Chapter 2 Methods for Describing Sets of Data 29
2.1 Describing Qualitative Data 31
2.2 Graphical Methods for Describing Quantitative Data 42
2.3 Numerical Measures of Central Tendency 54
2.4 Numerical Measures of Variability 65
2.5 Using the Mean and Standard Deviation to Describe Data 71
2.6 Numerical Measures of Relative Standing 79
2.7 Methods for Detecting Outliers: Box Plots and z-Scores 83
2.8 Graphing Bivariate Relationships (Optional) 93
2.9 Distorting the Truth with Descriptive Statistics 98
Statistics in Action: Body Image Dissatisfaction: Real or Imagined? 30
Using Technology: MINITAB: Describing Data 112
TI-83/TI-84 Plus Graphing Calculator: Describing Data 113
Chapter 3 Probability 115
3.1 Events, Sample Spaces, and Probability 117
3.2 Unions and Intersections 130
3.3 Complementary Events 133
3.4 The Additive Rule and Mutually Exclusive Events 135
3.5 Conditional Probability 142
3.6 The Multiplicative Rule and Independent Events 145
Statistics in Action: Lotto Buster! Can You Improve Your Chance of Winning? 116
Using Technology: TI-83/TI-84 Plus Graphing Calculator: Combinations and Permutations 165
Chapter 4
Random Variables and Probability Distributions 166
4.1 Two Types of Random Variables 168
4.2 Probability Distributions for Discrete Random Variables 171
4.3 The Binomial Random Variable 183
4.4 Probability Distributions for Continuous Random Variables 194
4.5 The Normal Distribution 196
4.6 Descriptive Methods for Assessing Normality 209
4.7 Approximating a Binomial Distribution with a Normal Distribution (Optional) 218
4.8 Sampling Distributions 223
4.9 The Sampling Distribution of \bar{x} and the Central Limit Theorem 230
Statistics in Action: Super Weapons Development-Is the Hit Ratio Optimized? 167
Using Technology: MINITAB: Binomial Probabilities, Normal Probability, and SimulatedSampling Distribution247
Chapter 5 Inferences Based on a Single Sample 252
5.1 Identifying and Estimating the Target Parameter 253
5.2 Confidence Interval for a Population Mean: Normal (z) Statistic 255
5.3 Confidence Interval for a Population Mean: Student's \boldsymbol{t}-Statistic 265
5.4 Large-Sample Confidence Interval for a Population Proportion 275
5.5 Determining the Sample Size 282
5.6 Confidence Interval for a Population Variance (Optional) 289
Statistics in Action: Medicare Fraud Investigations 253
Using Technology: MINITAB: Confidence Intervals 302
TI-83/TI-84 Plus Graphing Calculator: Confidence Intervals 304
Chapter 6 Inferences Based on a Single Sample 306
6.1 The Elements of a Test of Hypothesis 307
6.2 Formulating Hypotheses and Setting Up the Rejection Region 313
6.3 Observed Significance Levels: p-Values 318
6.4 Test of Hypothesis about a Population Mean: Normal (z) Statistic 323
6.5 Test of Hypothesis about a Population Mean: Student's t-Statistic 331
6.6 Large-Sample Test of Hypothesis about a Population Proportion 338
6.7 Test of Hypothesis about a Population Variance (Optional) 346
6.8 A Nonparametric Test about a Population Median (Optional) 352
Statistics in Action: Diary of a KLEENEX ${ }^{\circledR}$ User How Many Tissues in a Box? 307
Using Technology: MINITAB: Tests of Hypotheses 364
TI-83/TI-84 Plus Graphing Calculator: Tests of Hypotheses 366
Chapter 7 Comparing Population Means 367
7.1 Identifying the Target Parameter 368
7.2 Comparing Two Population Means: Independent Sampling 369
7.3 Comparing Two Population Means: Paired Difference Experiments 387
7.4 Determining the Sample Size 399
7.5 A Nonparametric Test for Comparing Two Populations: Independent Samples 403
7.6 A Nonparametric Test for Comparing Two Populations: Paired Difference Experiment (Optional) 412
7.7 Comparing Three or More Population Means: Analysis of Variance (Optional) 421
Statistics in Action: Zixlt Corp. v. Visa USA Inc.-A Libel Case 368
Using Technology: MINITAB: Comparing Means 443
TI-83/TI-84 Plus Graphing Calculator: Comparing Means 446
Chapter 8 Comparing Population Proportions 449
8.1 Comparing Two Population Proportions: Independent Sampling 451
8.2 Determining the Sample Size 458
8.3 Testing Category Probabilities: Multinomial Experiment 461
8.4 Testing Categorical Probabilities: Two-Way (Contingency) Table 470
Statistics in Action: The Case of the Ghoulish Transplant Tissue 450
Using Technology: MINITAB: Categorized Data Analyses 496
TI-83/TI-84 Plus Graphing Calculator:Categorical Data Analyses 497
Chapter 9
Simple Linear Regression 499
9.1 Probabilistic Models 501
9.2 Fitting the Model: The Least Squares Approach 505
9.3 Model Assumptions 518
9.4 Assessing the Utility of the Model: Making Inferences about the Slope β_{1} 523
9.5 The Coefficients of Correlation and Determination 532
9.6 Using the Model for Estimation and Prediction 542
9.7 A Complete Example 550
9.8 A Nonparametric Test for Correlation (Optional) 554
Statistics in Action: Can "Dowsers" Really Detect Water? 500
Using Technology: MINITAB: Simple Linear Regression 573
TI-83/TI-84 Plus Graphing Calculator: Simple Linear Regression 575
Appendix A Summation Notation 577
Appendix B Tables 579
Table I Binomial Probabilities 580
Table II Normal Curve Areas 584
Table III Critical Values of t 585
Table IV Critical Values of χ^{2} 586
Table V Critical Values of T_{L} and T_{U} for the Wilcoxon Rank Sum Test 588
Table VI Critical Values of T_{0} in the Wilcoxon Signed Rank Test 589
Table VII Percentage Points of the F-Distribution, $\alpha=.10$ 590
Table VIII Percentage Points of the F-Distribution, $\alpha=.05$ 592
Table IX Percentage Points of the F-Distribution, $\alpha=.025$ 594
Table X Percentage Points of the F-Distribution, $\alpha=.01$ 596
Table XI Critical Values of Spearman's Rank Correlation Coefficient 598
Appendix C Calculation Formulas for Analysis of Variance(Independent Sampling) 599
Short Answers to Selected Odd-Numbered Exercises 600
Index 607
Photo Credits 612

Preface

A First Course in Statistics, $12^{\text {th }}$ edition, is an introductory text designed for one-semester courses that emphasizes inference and sound decision-making through extensive coverage of data collection and analysis. As in earlier editions, the 12th edition text stresses the development of statistical thinking, the assessment of credibility, and value of the inferences made from data, both by those who consume and those who produce them. It assumes a mathematical background of basic algebra.

The text incorporates the following features, developed from the American Statistical Association's (ASA) Guidelines for Assessment and Instruction in Statistics Education (GAISE) Project:

- Emphasize statistical literacy and develop statistical thinking
- Use real data in applications
- Use technology for developing conceptual understanding and analyzing data
- Foster active learning in the classroom
- Stress conceptual understanding rather than mere knowledge of procedures
- Emphasize intuitive concepts of probability

New in the 12th Edition

- Over 1,000 exercises, with revisions and updates to 30%. Many new and updated exercises, based on contemporary studies and real data, have been added. Most of these exercises foster and promote critical thinking skills.
- Updated technology. All printouts from statistical software (SAS, SPSS, MINITAB, and the TI-83/TI-84 Plus Graphing Calculator) and corresponding instructions for use have been revised to reflect the latest versions of the software.
- New Statistics in Action Cases. Almost half of the 9 Statistics in Action cases are new or updated, each based on real data from a recent study.
- Continued emphasis on Ethics. Where appropriate, boxes have been added emphasizing the importance of ethical behavior when collecting, analyzing, and interpreting data with statistics.

Content-Specific Changes to This Edition

- Chapter 1 (Statistics, Data, and Statistical Thinking). Material on all basic sampling concepts (e.g., random sampling and sample survey designs) has been streamlined and moved to Section 1.5 (Collecting Data: Sampling and Related Issues).
- Chapter 2 (Methods for Describing Sets of Data). The section on summation notation has been moved to the appendix (Appendix A). Also, recent examples of misleading graphics have been added to Section 2.10 (Distorting the Truth with Descriptive Statistics).
- Chapter 4 (Random Variables and Probability Distributions). Use of technology for computing probabilities of random variables with known probability distributions (e.g., binomial and normal distributions) has been incorporated into the relevant sections of this chapter. This reduces the use of tables of probabilities for these distributions.
- Chapter 6 (Tests of Hypothesis). The section on p-values in hypothesis testing (Section 6.3) has been moved up to emphasize the importance of their use in real-life studies. Throughout the remainder of the text, conclusions from a test of hypothesis are based on p-values.

We have maintained or strengthened the pedagogical features of A First Course in Statistics that make it unique among introductory statistics texts. These features, which assist the student in achieving an overview of statistics and an understanding of its relevance in both the business world and everyday life, are as follows:

- Use of Examples as a Teaching Device - Almost all new ideas are introduced and illustrated by data-based applications and examples. We believe that students better understand definitions, generalizations, and theoretical concepts after seeing an application. All examples have three components: (1) "Problem", (2) "Solution", and (3) "Look Back" (or "Look Ahead"). This step-by-step process provides students with a defined structure by which to approach problems and enhances their prob-lem-solving skills. The "Look Back" feature often gives helpful hints to solving the problem and/or provides a further reflection or insight into the concept or procedure that is covered.
- Now Work-A "Now Work" exercise suggestion follows each example. The Now Work exercise (marked with the icon NW in the exercise sets) is similar in style and concept to the text example. This provides the student with an opportunity to immediately test and confirm their understanding.
- Statistics in Action-Each chapter begins with a case study based on an actual contemporary, controversial or high-profile issue. Relevant research questions and data from the study are presented and the proper analysis demonstrated in short "Statistics in Action Revisited" sections throughout the chapter. These motivate students to critically evaluate the findings and think through the statistical issues involved.
- Applet Exercises-The text is accompanied by applets (short computer programs) available at www.pearsonhighered.com/mathstatsresources and within MyStatLab. These point-and-click applets allow students to easily run simulations that visually demonstrate some of the more difficult statistical concepts (e.g., sampling distributions and confidence intervals.) Each chapter contains several optional applet exercises in the exercise sets. They are denoted with the following icon: ©
- Real Data-Based Exercises-The text includes more than 1,000 exercises based on applications in a variety of disciplines and research areas. All the applied exercises employ the use of current real data extracted from a current publications (e.g., newspapers, magazines, current journals, and the Internet). Some students have difficulty learning the mechanics of statistical techniques when all problems are couched in terms of realistic applications. For this reason, all exercise sections are divided into four parts:

Learning the Mechanics. Designed as straightforward applications of new concepts, these exercises allow students to test their ability to comprehend a mathematical concept or a definition.
Applying the Concepts-Basic. Based on applications taken from a wide variety of journals, newspapers, and other sources, these short exercises help students begin developing the skills necessary to diagnose and analyze real-world problems.
Applying the Concepts-Intermediate. Based on more detailed real-world applications, these exercises require students to apply their knowledge of the technique presented in the section.
Applying the Concepts-Advanced. These more difficult real-data exercises require students to use their critical thinking skills.

- Critical Thinking Challenges-Placed at the end of the "Supplementary Exercises" section only, students are asked to apply their critical thinking skills to solve one or two challenging real-life problems. These exercises expose students to real-world problems with solutions that are derived from careful, logical thought and selection of the appropriate statistical analysis tool.
- Exploring Data with Statistical Computer Software and the Graphing Calculator-Each statistical analysis method presented is demonstrated using output from three leading Windows-based statistical software packages: SAS, SPSS, and MINITAB. Students are exposed early and often to computer printouts they will encounter in today's hi-tech world.
- "Using Technology" Tutorials-MINITAB software tutorials appear at the end of each chapter and include point-and-click instructions (with screen shots). These tutorials are easily located and show students how to best use and maximize MINITAB statistical software. In addition, output and keystroke instructions for the TI-84 Graphing Calculator are presented.
- Profiles of Statisticians in History (Biography)-Brief descriptions of famous statisticians and their achievements are presented in side boxes. With these profiles, students will develop an appreciation of the statistician's efforts and the discipline of statistics as a whole.
- Data and Applets - The Web site www.pearsonhighered.com/mathstatsresources has files for all the data sets marked with the dataset icon (D) in the text .These include data sets for text examples, exercises, Statistics in Action and Real-World cases. All data files are saved in three different formats: SAS, MINITAB, and SPSS. This site also contains the applets that are used to illustrate statistical concepts.

Get the most out of MyStatLab

MyStatLab is the world's leading online resource for teaching and learning statistics.
MyStatLab helps students and instructors improve results, and provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.

Personalized Support for Students

- MyStatLab comes with many learning resources-eText, animations, videos, and more-all designed to support your students as they progress through their course.
- The Adaptive Study Plan acts as a personal tutor, updating in real time based on student performance to provide personalized recommendations on what to work on next. With the new Companion Study Plan assignments, instructors can now assign the Study Plan as a prerequisite to a test or quiz, helping to guide students through concepts they need to master.
- Personalized Homework allows instructors to create homework assignments tailored to each student's specific needs, focused on just the topics they have not yet mastered.

Used by nearly 4 million students each year, the MyStatLab and MyMathLab family of products delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.

Resources for Success

Student Resources

Student's Solutions Manual, by Nancy Boudreau (Emeritus Associate Professor, Bowling Green State University), includes complete worked-out solutions to all odd-numbered text exercises (ISBN-I3: 978-0-I3-408IOI-4, ISBN-I0: 0-I3-408IOI-3.
Excel ${ }^{\circledR}$ Manual (download only), by Mark Dummeldinger (University of South Florida). Available for download from www.pearsonhighered.com/mathstatsresources.

Study Cards for Statistics Software. This series of study cards, available for Excel ${ }^{\circledR}$, MINITAB, JMP ${ }^{\circledR}$, SPSS, R, StatCrunch ${ }^{\circledR}$, and TI-83/84 Plus Graphing Calculators, provides students with easy step-by-step guides to the most common statistics software. Visit myPearsonstore.com for more information.

Instructor Resources

Annotated Instructor's Edition contains answers to text exercises. Annotated marginal notes include Teaching Tips, suggested exercises to reinforce the statistical concepts discussed in the text, and short answers to exercises and examples (ISBN-I3: 978-0-I3-40808I-9; ISBN-I0: 0-I3-40808I-5).
Instructor's Solutions Manual (download only), by Nancy Boudreau (Emeritus Associate Professor, Bowling Green State University), includes complete worked-out solutions to all even-numbered text exercises. Careful attention has been paid to ensure that all methods of solution and notation are consistent with those used in the core text.

PowerPoint ${ }^{\circledR}$ Lecture Slides include figures and tables from the textbook. Available for download from Pearson's online catalog at www.pearsonhighered.com/irc and in MyStatLab.
TestGen ${ }^{\circledR}$ (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and test bank are available for download from Pearson Education's online catalog at www.pearsonhighered.com/irc and in MyStatLab.

Online Test Bank, a test bank derived from TestGen ${ }^{\circledR}$, is available for download from Pearson's online catalog at www.pearsonhighered.com/irc and in MyStatLab.

Technology Resources

A companion website (www.pearsonhighered.com/ mathstatsresources) holds a number of support materials, including:

- Data sets formatted as .csv, .txt, .sas7bdat (SAS), .sav (SPSS), .mtp (minitab), .xls (Excel), and TI files
- Applets (short computer programs) that allow students to run simulations that visually demonstrate statistical concepts

This book reflects the efforts of a great many people over a number of years. First, we would like to thank the following professors, whose reviews and comments on this and prior editions have contributed to the 12th edition:

Ali Arab, Georgetown University
Jen Case, Jacksonville State University
Maggie McBride, Montana State University - Billings
Surajit Ray, Boston University
JR Schott, University of Central Florida
Susan Schott, University of Central Florida
Lewis Shoemaker, Millersville University
Engin Sungur, University of Minnesota - Morris
Sherwin Toribio, University of Wisconsin - La Crosse
Michael Zwilling, Mt. Union College

Reviewers of Previous Editions

Bill Adamson, South Dakota State; Ibrahim Ahmad, Northern Illinois University; Roddy Akbari, Guilford Technical Community College; David Atkinson, Olivet Nazarene University; Mary Sue Beersman, Northeast Missouri State University; William H. Beyer, University of Akron; Marvin Bishop, Manhattan College; Patricia M. Buchanan, Pennsylvania State University; Dean S. Burbank, Gulf Coast Community College; Ann Cascarelle, St. Petersburg College; Kathryn Chaloner, University of Minnesota; Hanfeng Chen, Bowling Green State University; Gerardo Chin-Leo, The Evergreen State College; Linda Brant Collins, Iowa State University; Brant Deppa, Winona State University; John Dirkse, California State University - Bakersfield; N. B. Ebrahimi, Northern Illinois University; John Egenolf, University of Alaska-Anchorage; Dale Everson, University of Idaho; Christine Franklin, University of Georgia; Khadiga Gamgoum, Northern Virginia CC; Rudy Gideon, University of Montana; Victoria Marie Gribshaw, Seton Hill College; Larry Griffey, Florida Community College; David Groggel, Miami University at Oxford; Sneh Gulati, Florida International University; John E. Groves, California Polytechnic State University - San Luis Obispo; Dale K. Hathaway, Olivet Nazarene University; Shu-ping Hodgson, Central Michigan University; Jean L. Holton, Virginia Commonwealth University; Soon Hong, Grand Valley State University; Ina Parks S. Howell, Florida International University; Gary Itzkowitz, Rowan College of New Jersey; John H. Kellermeier, State University College at Plattsburgh; Golan Kibria, Florida International University; Timothy J. Killeen, University of Connecticut; William G. Koellner, Montclair State University; James R. Lackritz, San Diego State University; Diane Lambert, AT\&T/Bell Laboratories; Edwin G. Landauer, Clackamas Community College; James Lang, Valencia Junior College; Glenn Larson, University of Regina; John J. Lefante, Jr., University of South Alabama; Pi-Erh Lin, Florida State University; R. Bruce Lind, University of Puget Sound; Rhonda Magel, North Dakota State University; Linda C. Malone, University of Central Florida; Allen E. Martin, California State University - Los Angeles; Rick Martinez, Foothill College; Brenda Masters, Oklahoma State University; Leslie Matekaitis, Cal Genetics; E. Donice McCune, Stephen F. Austin State University; Mark M. Meerschaert, University of Nevada - Reno; Greg Miller, Steven F. Austin State University; Satya Narayan Mishra, University of South Alabama; Kazemi Mohammed, UNC-Charlotte; Christopher Morrell, Loyola College in Maryland; Mir Mortazavi, Eastern New Mexico University; A. Mukherjea, University of South Florida; Steve Nimmo, Morningside College (Iowa); Susan Nolan, Seton Hall University; Thomas O'Gorman, Northern Illinois University; Bernard Ostle, University of Central Florida; William B. Owen, Central Washington University; Won J. Park, Wright State University; John J. Peterson, Smith Kline \& French

Laboratories; Ronald Pierce, Eastern Kentucky University; Betty Rehfuss, North Dakota State University - Bottineau; Andrew Rosalsky, University of Florida; C. Bradley Russell, Clemson University; Rita Schillaber, University of Alberta; James R. Schott, University of Central Florida; Susan C. Schott, University of Central Florida; George Schultz, St. Petersburg Junior College; Carl James Schwarz, University of Manitoba; Mike Seyfried, Shippensburg University; Arvind K. Shah, University of South Alabama; Lewis Shoemaker, Millersville University; Sean Simpson, Westchester CC; Charles W. Sinclair, Portland State University; Robert K. Smidt, California Polytechnic State University - San Luis Obispo; Vasanth B. Solomon, Drake University; W. Robert Stephenson, Iowa State University; Thaddeus Tarpey, Wright State University; Kathy Taylor, Clackamas Community College; Barbara Treadwell, Western Michigan University; Dan Voss, Wright State University; Augustin Vukov, University of Toronto; Dennis D. Wackerly, University of Florida; Barbara Wainwright, Salisbury University; Matthew Wood, University of Missouri-Columbia.

Other Contributors

Special thanks are due to our ancillary authors, Nancy Boudreau and Mark Dummeldinger, both of whom have worked with us for many years. Accuracy checkers Dave Bregenzer and Engin Sungur helped ensure a highly accurate, clean text. Finally, the Pearson Education staff of Deirdre Lynch, Patrick Barbera, Christine O'Brien, Chere Bemelmans, Justin Billing, Tiffany Bitzel, Jennifer Myers, Barbara Atkinson and Jean Choe as well as Integra-Chicago's Alverne Ball helped greatly with all phases of the text development, production, and marketing effort.

This page intentionally left blank

Applications Index

Agricultural/gardening/farming applications:

chickens with fecal contamination, 243
colored string preferred by chickens, 264, 361
crop damage by wild boars, 128,153
crop yield comparisons, 399-400
dehorning of dairy calves, 344
fungi in beech forest trees, 160
killing insects with low oxygen, 346 , 491-492
maize seeds, 162
pig castration, 441
plants that grow on Swiss cliffs, 97,541
rat damage to sugarcane, 460
subarctic plants, 494
USDA chicken inspection, 128
zinc phosphide in pest control, 111

Archaeological applications:

ancient pottery, 106, 159, 297, 489
bone fossils, 329-330
defensibility of a landscape, 345-346, 493
radon exposure in Egyptian tombs, 272, 294, 336-337,357
shaft graves in ancient Greece, 50, 69, 273-274, 287, 350

Astronomy/space science applications:
astronomy students and the Big Bang theory, 346
lunar soil, 362
measuring the moon's orbit, 504, 513, 521, 547-548, 560
redshifts of quasi-stellar objects, 514
Satellite Database, 21
satellites in orbit, 40
space shuttle disaster, 245
speed of light from galaxies, 109, 110-111
tracking missiles with satellite imagery, 241

Automotive/motor vehicle applications.

 See also Aviation applications; Travel applicationsair bag danger to children, 300-301
air-pollution standards for engines, 332-334
ammonia in car exhaust, 108-109
car battery guarantee, 74-75
car crash testing, 107, 159-160, 170, 179, 242, 438
critical-part failures in NASCAR vehicles, 237
gas mileage, 202, 210-212
improving driving performance while fatigued, 433
motorcycle detection while driving, 345
motorcyclists and helmets, 17
railway track allocation, 40, 129
red light cameras and car crashes, 398-399, 418-419
safety of hybrid cars, 488-489
satellite radio in cars, 17-18
selecting new-car options, 162
speeding and fatal car crashes, 154
speeding and young drivers, 328
traffic sign maintenance, 457,469
unleaded fuel costs, 237
variable speed limit control for freeways, 181

Aviation applications:

aircraft bird strikes, 281, 288
classifying air threats with heuristics, 483
"cry wolf" effect in air traffic controlling, 482
flight response of geese to helicopter traffic, 492-493
shared leadership in airplane crews, 381-382
unoccupied seats per flight, 259
Behavioral applications. See also Gender applications; Psychological applications; Sociological applications
accountants and Machiavellian traits, 360
attempted suicide methods, 140
bullying, 456
cell phone handoff behavior, 141
dating and disclosure, 23, 329 divorced couples, 123-124
employee behavior problems, 141
eye and head movement relationship, 570
fish feeding, 96,569
interactions in children's museum, 41, 280, 469, 484
Jersey City drug market, 23
last name effect, 180, 382, 402, 539
laughter among deaf signers, 396, 402 married women, 241
money spent on gifts (buying love), 23
parents' behavior at gym meet, 243
personality and aggressive behavior, 263-264
planning-habits survey, 456-457
rudeness in the workplace, 385-386, 411
service without a smile, 386
shock treatment to learners
(Milgram experiment), 146
shopping vehicle and judgment, 78, 207, 384
spanking, parents who condone, 241,362
teacher perceptions of child behavior, 360
time required to complete a task, 330
walking in circles when lost, 338
working on summer vacation, 192, 222

Beverage applications:

alcohol, threats, and electric shocks, 209
alcohol consumption by college students, 264, 490, 491
alcoholic fermentation in wine, 399
bacteria in bottled water, 288
bursting strength of bottles, 410
coffee, caffeine content of, 288,356
coffee, organic, 345
coffee, overpriced Starbucks, 280
drinking water quality, 21
lead in drinking water, 82
"Pepsi challenge" marketing campaign, 360
Pepsi vs. Coca-Cola, 7-8
restoring self-control when intoxicated, 433
soft-drink bottles, 245
temperature and ethanol production, 433
undergraduate problem drinking, 264
Biology/life science applications. See also Dental applications; Forestry applications; Marine/marine life applications
African rhinos, 128
aircraft bird strikes, 281, 288
antigens for parasitic roundworm in birds, 274, 294
armyworm pheromones, 457
bacteria in bottled water, 288
bacteria-infected spider mites, reproduction of, 274
beetles and slime molds, 467
blond hair types in the Southwest Pacific, 91
body length of armadillos, 107
chemical insect attractant, 160
chemical signals of mice, 141, 193, 233
chickens with fecal contamination, 243
colored string preferred by chickens, 264
comparing measuring instruments, 400-401
crab spiders hiding on flowers, 51-52, 336,357
crop damage by wild boars, 128, 153
dehorning of dairy calves, 344
DNA-reading tool for quick identification of species, 317
ecotoxicological survival, 222-223
environmental vulnerability of amphibians, 180
extinct birds, 21, 42, 78, 82, 155, 297
fallow deer bucks' probability of fighting, 140-141, 155
fish feeding, 96
fish feeding behavior, 569
flight response of geese to helicopter traffic, 492-493

Biology/life science applications.

 (continued)giraffe vision, 272, 287, 530-531, 540-541
great white shark lengths, 338
habitats of endangered species, 216
identifying organisms using computers, 345
inbreeding of tropical wasps, 299, 361
killing insects with low oxygen, 346 , 491-492
Mongolian desert ants, 63, 97, 170-171, 440, 514, 522, 548, 560
mortality of predatory birds, 570
parrot fish weights, 361
pig castration, 441
radioactive lichen, 108, 298, 362
rainfall and desert ants, 272, 560
rat damage to sugarcane, 460
rat-in-maze experiment, 72-73
rhino population, 39
roaches and Raid fumigation, 264
salmonella in food, 300, 457
shrimp quality, 356
supercooling temperature of frogs, 244
swim maze study of rat pups, 441
USDA chicken inspection, 128
water hyacinth control, 179-180
zoo animal training, 300

Business applications:

accountant salary survey, 300
accountants and Machiavellian traits, 360
blood diamonds, 153, 222
brokerage analyst forecasts, 139
brown-bag lunches at work, 299
child labor in diamond mines, 541
consumer sentiment on state of economy, 277-278
corporate sustainability, 22, 50, 61-62, 77,92, 236, 262, 293, 328
employee behavior problems, 141
employee performance ratings, 208
executive coaching and meeting effectiveness, 209
executives who cheat at golf, 143
expected value of insurance, 174-175
facial structure of CEOs, 263, 294, 329
gender and salaries, 88-89, 392-393
goodness-of-fit test with monthly salaries, 494-495
job satisfaction of women in construction, 483
lawyer salaries, 100
museum management, 41-42, 102, 129, 467
nannies who worked for celebrities, 280
nice guys finish last, 512-513, 521,547,562
overpriced Starbucks coffee, 280
"Pepsi challenge" marketing campaign, 360
rudeness in the workplace, 385-386,411
salary linked to height, 540
self-managed work teams and family life, 442
shopping on Black Friday, 263, 288
shopping vehicle and judgment, 78, 207,384
trading skills of institutional investors, 349-350
work-life balance, 553-554
Zillow.com estimates of home values, 22

Chemicals/chemistry applications.

See also Medical/medical research/
alternative medicine applications
chemical insect attractant, 160
chemical signals of mice, 141, 193, 233
drug content assessment, 215-216, 351,384-385
firefighters' use of gas detection devices., 154
mineral flotation in water, $64,216,387$
oxygen bubbles in molten salt, 274
roaches and Raid fumigation, 264
Teflon-coated cookware hazards, 238
toxic chemical incidents, 160-161
zinc phosphide in pest control, 111

Computer applications. See Electronics/ computer applications

Construction/home improvement/home

 purchases and sales applications:bending strength of wooden roof, 298
land purchase decision, 79
levelness of concrete slabs, 244
load on frame structures, 209
predicting sale prices of homes, 566
spall damage in bricks, 572
strand bond performance of prestressed concrete, 351

Crime applications. See also Legal/

 legislative applicationsburglary risk in cul-de-sacs, 287
casino employment and crime, 534-535
computer, 21
domestic abuse victims, 193-194
effectiveness ratings by crime prevention experts, 415-416
gender attitudes toward corruption and tax evasion, 409-410
Jersey City drug market, 23
masculinity and crime, 386,492
Medicare fraud investigations, 253, 270-271, 279, 286, 301
motivation of drug dealers, $77,82,171$, 237, 262, 293-294, 351
post office violence, 159
victims of violent crime, 278-279

Dental applications:

acidity of mouthwash, 397-398
anesthetics, dentists' use of, 77,91
cheek teeth of extinct primates, 38,50 , 62, 70, 128-129, 294, 336, 356
dental bonding agent, 361
dental visit anxiety, 207,336
laughing gas usage, 241
teeth defects and stress in prehistoric Japan, 458

Earth science applications. See also Agricultural/gardening/farming applications; Environmental applications; Forestry applications
albedo of ice melt ponds, 262
alkalinity of river water, 360
daylight duration in western
Pennsylvania, 273, 288
deep mixing of soil, 207
dissolved organic compound in lakes, 337-338
dowsers for water detection, 500 , 510-511, 527, 538, 546
earthquake aftershocks, 59-60
earthquake ground motion, 20
estimating well scale deposits, 397
glacial drifts, 107
glacier elevations, 215
ice melt ponds, $40,281,468$
identifying urban land cover, 360
permeability of sandstone during
weathering, 63-64, 70, 78, 92-93, 217
quantum tunneling, 571
rockfall rebound length, 61, 69-70, 92, 293, 350, 357
shear strength of rock fractures, 215
soil scouring and overturned trees, 432

Education/school applications. See also

 Library/book applicationsblue vs. red exam, 82
bullying behavior, 456
calories in school lunches, 317
children's attitude toward reading, 242-243
college application, 20
college entrance exam scores, 204
college protests of labor exploitation, 566-568
compensatory advantage in education, 154-155
delinquent children, 101
ESL reading ability, 569
ESL students and plagiarism, 129
family involvement in homework, 412
FCAT math test, 242
FCAT scores and poverty, 515-516, 522, 530
food availability at middle schools, 420, 563
gambling in high schools, 441-442
grades in statistics courses, 111
humane education and classroom pets, 38-39
insomnia and education status, 22
instructing English-as-a-first-language learners, 330-331
interactions in children's museum, 41, 280, 469, 484
IQ and The Bell Curve, 245
Japanese reading levels, 106-107
math scores, 82
passing grade scores, 194
ranking Ph.D. programs in economics, 83,217
RateMyProfessors.com, 539
reading comprehension, 419
SAT scores, 30, 52-53, 80, 92, 95, 108, 242, 422
sensitivity of teachers towards racial intolerance, 398, 419
standardized test "average," 111
STEM experiences for girls, 20, 39, 128
student gambling on sports, 243
student GPAs, 20-21, 83
teacher perceptions of child behavior, 360
teaching method comparisons, 369-379
teaching software effectiveness, 382
teenagers' use of emoticons in writing, 281, 344
text messaging in class, 409
untutored second language acquisition, 93
using game simulation to teach a course, 129-130
visually impaired students, 243

Elderly/older-person applications:

Alzheimer's detection, 468, 483
Alzheimer's treatment, 299-300
dementia and leisure activities, 398 personal networks of older adults, 297 wheelchair users, 162

Electronics/computer applications:

cell phone charges, 200-201
cell phone defects, 285-286
cell phone handoff behavior, 141
cell phone use, 246
cell phones, Short Message Service (SMS) for, 438-439
charge length of iPod batteries, 354-355
college tennis recruiting with Web site, 439
computer crimes, 21
cyberchondria, 159
downloading apps to cell phone, 179
encoding variability in software, 142
encryption systems with erroneous ciphertexts, 157
flicker in an electrical power system, 208
forecasting movie revenues with Twitter, 505, 550
identifying organisms using computers, 345
Internet addiction, 15
intrusion detection systems, 156, 318
Microsoft program security issues, 39
mobile device typing strategies, 468, 483
monitoring quality of power equipment, 162
network forensic analysis, 244-245
paper friction in photocopier, 195
paying for music downloads, 38, 280, 344
phishing attacks to email accounts, 53 , 236-237, 295
requests to a Web server, 237
robot-sensor system configuration, 182
robots trained to behave like ants, 432
satellite radio in cars, 17-18
scanning errors at Wal-Mart, 139, 297-298, 359
series and parallel systems, 162-163
social robots walking and rolling, 38, 76-77, 127, 139, 153, 179, 273, 281, 287,467
software file updates, 215
solder joint inspections, 362-363
teaching software effectiveness, 382
testing electronic circuits, 441
text messaging in class, 409
transmission delays in wireless technology, 242
versatility with resistor-capacitor circuits, 484
visual attention of video game players, 238, 384, 402-403
voltage sags and swells, 82, 92 , 208, 236
vulnerability of relying party Web sites, 458
wear-out failure time display panels, 244
Web survey response rates, 456
Entertainment applications. See also Gambling applications
ages of Broadway ticketbuyers, 7
cable-TV home shoppers, 460
children's recall of TV ads, 383, 410
coin toss, 118-119, 122, 127, 134-137, 164, 171-173
craps game outcomes, 172-173
data in the news, 24
die toss, 121-122, 127, 131, 148-149
effectiveness of TV program on marijuana use, 464-465
forecasting movie revenues with Twitter, 505, 550
game show "Monty Hall Dilemma" choices, 485
Howard Stern on Sirius radio, 17-18
"Let's Make a Deal," 164
life expectancy of Oscar winners, 439
media and attitudes toward tanning, 431-432
movie selection, 125
music performance anxiety, $50,61,69$, 272,335-336, 355
"name game," 434, 517, 531, 541, 550, 561-562
newspaper reviews of movies, 125
Odd Man Out game, 164
parlay card betting, 182
paying for music downloads, 38, 280, 344
recall of TV commercials, 432
religious symbolism in TV commercials, 458
scary movies, 299
Scrabble game analysis, 469
size of TV households, 179
sports news on local TV broadcasts, 566
TV buyers, 460
TV subscription streaming, 344
20/20 survey exposés, 23-24
using game simulation to teach a course, 129-130
visual attention of video game players, 238, 384, 402-403
"winner's curse" in auction bidding, 489

Environmental applications. See also

 Earth science applications; Forestry applicationsair-pollution standards for engines, 332-334
aluminum cans contaminated by fire, 287
ammonia in car exhaust, 108-109
beach erosional hot spots, 160,181
contaminated fish, 289-292
contaminated river, 10-11
dissolved organic compound in lakes, 337-338
drinking water quality, 21
environmental vulnerability of amphibians, 180
fecal pollution, 245-246
fire damage, 550-553
groundwater contamination in wells,
42, 108, 356, 562
hotel water conservation, 121
ice melt ponds, $40,281,468$
lead in drinking water, 82
natural-gas pipeline accidents, 157
oil spill and seabirds, 102, 109-110, 438, 488
PCB in plant discharge, 361
power plant environmental impact, 439
removing nitrogen from toxic wastewater, 548-549
sea turtles and beach nourishment, 419-420
soil scouring and overturned trees, 432
water pollution testing, 298
whales entangled in fishing gear, 431

Exercise applications. See Sports/ exercise/fitness applications

Farming applications. See Agricultural/ gardening/farming applications

Fitness applications. See Sports/exercise/ fitness applications

Food applications. See also Agricultural/

 gardening/farming applications;Beverage applications; Health/
health care applications
calories in school lunches, 317
colors of M\&Ms candies, 128
food availability at middle schools, 420, 563
honey as cough remedy, $51,62,70,92$, 294-295, 410-411, 433-434
Hot Tamale caper, 363
oil content of fried sweet potato chips, 294, 351
oven cooking, 298-299
package design and taste, 482
packaging of children's health food, 329, 395
red snapper served in restaurants, 155, 281
red vs. yellow gummy bears and their flavors, 344
salmonella, 300, 457
shrimp quality, 356
steak as favorite barbecue food, 456
sweetness of orange juice, 516,522 , 530, 548, 549
taste test rating protocols, 383
taste-testing scales, 539, 562
tomato as taste modifier, 207, 237

Forestry applications. See also

Environmental applications
forest fragmentation, 97, 163, 530
fungi in beech forest trees, 160
tractor skidding distance, 274, 337, 357

Gambling applications. See also

Entertainment applications
casino gaming, 207
chance of winning at blackjack, 164
chance of winning at craps, 164, 226-227
craps game outcomes, 172-173
Galileo's passe-dix game, 142
gambling in high schools, 494
game show "Monty Hall Dilemma" choices, 485
jai alai Quinella betting, 129
"Let's Make a Deal," 164
odds of winning a horse race, 164
odds of winning Lotto, 116, 126, 137, 151-152, 181
parlay card betting, 182
roulette, odds of winning at, 161, 181-182
student gambling on sports, 243

Gardening applications. See Agricultural/

 gardening/farming applications
Gender applications:

distribution of boys in families, 194
gender attitudes toward corruption and tax evasion, 409-410
gender in two-child families, 180, 468
height, 209, 516-517
job satisfaction of women in construction, 483
masculinity and crime, 386, 492
masculinizing human faces, 360
salaries and gender, 88-89, 392-393
sex composition patterns of children in families, 163
voting on women's issues, 528

Genetics applications:

birth order and IQ, 329
dominant vs. recessive traits, 130
gene expression profiling, 139
IQ and The Bell Curve, 245
light-to-dark transition of genes, 440-441
maize seeds, 162
Punnett square for earlobes, 182
random mutation of cells, 156

Health/health care applications.

 See also Beverage applications; Dental applications; Environmental applications; Food applications; Genetics applications; Medical/ medical research/alternative medicine applications; Safety applicationsair bag danger to children, 300-301
birth weights of cocaine babies, 351
blood pressure, 262, 267-268
body fat in men, 223
CDC health survey, 297
cigar smoking and cancer, 161
cigarette advertisements, 314
cigarette smoking, 143-145, 557-558
cruise ship sanitation inspection, 51 , 77, 82, 92, 217
cyberchondria, 159
dementia and leisure activities, 398
drinking water quality, 21
hand washing vs. hand rubbing, 78,238
health risks to beachgoers, 128,154
heart rate variability (HRV) of police officers, 261
hygiene of handshakes, high fives, and fist bumps, 385, 402
inflammation in children, 409
insomnia and education status, 22
latex allergy in health care workers, 262, 300, 350-351
lung cancer CT scanning, 22
media and attitudes toward tanning, 431-432
Medicare fraud investigations, 253, 270-271, 279, 286, 301
MS and exercise, 442
muscle, fat, and bone issues while aging, 155-156
neurological impairment of POWs, 420
packaging of children's health food, 329, 395
passing physical fitness examination, 184-188
physical activity of obese young adults, 237, 540
sleep and mental performance, 458
sleep deprivation, 359
summer weight-loss camp, 395
Teflon-coated cookware hazards, 238
undergraduate problem drinking, 264
waking sleepers early, 274-275
walking to improve health, 317
weight loss diets, 369-373
when sick at home, 281

Home improvement. See Construction/ home improvement/home purchases and sales applications

Home maintenance applications:
burglary risk in cul-de-sacs, 287
dye discharged in paint, 245
portable grill displays selection, 129, 181,362
roaches and Raid fumigation, 264
tissues, number in box, $307,316,327$, 342-343

Home purchases and sales applications. See Construction/home improvement/ home purchases and sales applications
Legal/legislative applications. Crime applications
cloning credit or debit cards, 141-142 credit card lawsuit, 368, 379-380, 408 curbing street gang gun violence, 41, 281, 468
drivers stopped by police, 82
eyewitnesses and mug shots, 481
federal civil trial appeals, 161, 361-362
fingerprint expertise, 193, 223
gender attitudes toward corruption and tax evasion, 409-410
heart rate variability (HRV) of police officers, 261
jury trial outcomes, 318
lead bullets as forensic evidence, 130
legal advertising, 554
lie detector test, 162,362
patent infringement case, 439-440
polygraph test error rates, 362
racial profiling by the LAPD, 489
recall notice sender and lawsuits, 477-479
scallop harvesting and the law, 301
Library/book applications:
importance of libraries, 37
library book checkouts, 93
library cards, 160
reading Japanese books, 106-107
reading tongue twisters, 439
Life science applications. See Biology/ life science applications; Marine/ marine life applications

Manufacturing applications. See also Automotive/motor vehicle applications; Construction/home improvement/home purchases and sales applications
active nuclear power plants, 64-65, 70
aluminum smelter pot life span, 569-570
bursting strength of bottles, 410
child labor in diamond mines, 541
consumer complaints, 146, 149
contaminated gun cartridges, 180
cooling method for gas turbines, 330,351
corrosion prevention of buried steel structures, 20
cutting tool life span tests, 523,550
defect rate comparison between machines, 458-459
defective batteries, 340-341
estimating repair and replacement costs of water pipes, 515,528
flexography printing plates, evaluation of, 432
freckling of superalloy ingots, 109
increasing hardness of polyester composites, 337
lot acceptance sampling, 220-221
metal lathe quality control, 314
preventing production of defective items, 288
quality control monitoring, 314
reliability of a manufacturing network, 181
settlement of shallow foundations, 396-397, 418
soft-drink bottles, 245
softness ratings of paper, 412-413
solar energy cells, 180, 397, 402, 419, 553
spall damage in bricks, 572
temperature and ethanol production, 433
testing manufacturer's claim, 234-235
thickness of steel sheets, 227-228
twinned drill holes, 395-396
weapons development, 167, 205-206, 212-213
when to replace a maintenance system, 243
wind turbine blade stress, 566
yield strength of steel connecting bars, 337

Marine/marine life applications, 96
contaminated fish, 289-292
lobster fishing, 529, 540, 561
lobster trap placement, 273, 287, 294, 335, 357, 383-384
mercury levels in wading birds, 318
oil spill and seabirds, 102, 109-110, 438, 488
rare underwater sounds, 128
scallop harvesting and the law, 301
sea turtles and beach nourishment, 419-420
sea turtles' shell lengths, $69,207,237$, 264, 273, 294
shrimp quality, 356
underwater acoustic communication, 194, 345
underwater sound-locating abilities of alligators, 344
whales entangled in fishing gear, 431
whistling dolphins, 109
Medical/medical research/alternative medicine applications. See also Dental applications; Genetics applications; Health/health care applications
abortion provider survey, 140
accuracy of pregnancy tests, 164
Alzheimer's detection, 468, 483
Alzheimer's treatment, 299-300
ambulance response time, 156, 208
angioplasty's benefits challenged, 457, 460
animal-assisted therapy for heart patients, 78-79, 434, 439
asthma drug, 299-300
blood typing method, 96, 514, 521-522
brain specimen research, 52, 91, 299
bulimia, 383, 402
Caesarian births, 193, 222
cancer and smoking, 143-145
cardiac stress testing, 153
characterizing bone with fractal geometry, 531
comparing measuring instruments, 400-401
contact lenses for myopia, 64
dance/movement therapy, 571
dementia and leisure activities, 398
depression treatment, 437-438
drug content assessment, 215-216, 351, 384-385
drug designed to reduce blood loss, 33-35
drug response time, 315-316, 324-325, 520, 525, 537, 543-544
drug testing, 130, 492
dust mite allergies, 242
eating disorders, 52, 243
effectiveness of TV program on marijuana use, 464-465
emergency room waiting time, 223
errors in medical tests, 361
ethnicity and pain perception, 386-387
eye refraction, 64
eye shadow, mascara, and nickel allergies, 282, 288
FDA mandatory new-drug testing, 359
fitness of cardiac patients, 244
gestation time for pregnant women, 243-244
guided bone regeneration, 410
healing potential of handling museum objects, 396, 418
heart patients, healing with music, imagery, touch, and prayer, 481-482
heart rate during laughter, 329
herbal medicines and therapy, 21, 359
HIV vaccine efficacy, 484-485
honey as cough remedy, $51,62,70,92$, 294-295, 433-434
hospital administration of malaria patients, 456
hospital admissions, 135-136
hospital stay, length of, 94-95, 255-257,326
interocular eye pressure, 362
jaw dysfunction, 466-467
LASIK surgery complications, 222
latex allergy in health care workers, 262, 300, 350-351
lung cancer CT scanning, 22
male fetal deaths following 9/11/2001,346
MS and exercise, 442
multiple sclerosis drug, 492
olfactory reference syndrome (ORS), 282, 288
pain empathy and brain activity, 531,563
pain tolerance, 541
perceptions of emergency medical residents, 411-412
placebo effect and pain, 396
post-op nausea, 130
psoriasis treatment with "Doctorfish of Kangal," 92, 417-418
reaction time to drugs, 405-407, 503, 507-510
skin cancer treatment, 176-177
skin cream effectiveness, 363
sleep apnea and sleep stage transitioning, 139-140, 154
splinting in mountain-climbing accidents, 281-282
stability of compounds in drugs, 49-50, 82, 328
sterile couples in Jordan, 159
teamwork between doctors and nurses, 411
tendon pain treatment, 420-421
transplants, 164, 450, 477-479
virtual reality hypnosis for pain, 318
yoga for cancer patients, 431

Miscellaneous applications:

Benford's Law of Numbers, 110
box plots and standard normal distribution, 209
customers in line at Subway shop, 170
evaporation from swimming pools, 262-263
fill weight variance, 346-349
impact of dropping ping-pong balls, 553
jitter in water power system, 300
marine selection, 125
matching socks, 130
National Bridge Inventory, 21
national firearms survey, 153, 280-281
psychic ability, 156, 194
quantitative models of music, 522
questionnaire mailings, 245
random numbers, 19-20
randomly sampling households, 13
regression through the origin, 571-572
selecting a random sample of students, 160
sound waves from a basketball, 52 , 96-97, 170, 516, 549
spreading rate of spilled liquid, 97-98, 517-518, 532, 550
symmetric vs. skewed data sets, 63
testing normality, 495
TNT detection, 156
Winchester bullet velocity, 78
Motor vehicle applications. See Automotive/motor vehicle applications

Nuclear applications. See under Manufacturing applications

Political applications:

beauty and electoral success, 529
blood diamonds, 153, 222
border protection avatar, 318
consumer sentiment on state of economy, 277-278
countries allowing free press, 243
electoral college votes, 208
exit polls, 165
Iraq War casualties, 102
political poll size, 460
political representation of religious groups, 469
politics and religion, 489-490
public opinion polls, 275
rigged election, 495
trust in president, 275
U.S. Treasury deficit prior to Civil War, 21
verifying voter petitions, 363
voting for mayor, 190-191
voting in primary elections, 193
voting on women's issues, 528

Psychological applications. See also Behavioral applications; Gender applications; Religion applications; Sociological applications

alcohol, threats, and electric shocks, 209
appraisals and negative emotions, 154
attention time given to twins, 298
birth order and IQ, 329
body image dissatisfaction, 30, 35-37, 48, 75-76, 90
bulimia, 383, 402
characteristics of antiwar
demonstrators, 77-78, 215, 238
children's perceptions of their neighborhood, 480
children's recall of TV ads, 383, 410
choosing a mother, 23

Psychological applications. (continued)
cognitive impairment of schizophrenics, 382
cognitive skills for successful arguing, 385
dental visit anxiety, 207, 336
detecting rapid visual targets and attentional blink, 522
divorced couples, 150-151
eating disorders, 52, 243
effectiveness of TV program on marijuana use, 464-465
emotional empathy in young adults, 329, 356
free recall memory strategy, 337,357
guilt in decision making, 22, 140, 153-154, 494
influencing performance in a serial addition task, 456, 460, 482
interactions in children's museum, 41, 280, 469, 484
Internet addiction, 15
IQ and mental deficiency, 493
irrelevant speech effects, 49, 77, 102-103, 171,214-215, 261-262,330, 350
lie detector test, 162,362
listening time of infants, 317
married women, 241
money spent on gifts (buying love), 23
motivation and right-oriented bias, 41
motivation of drug dealers, $77,82,171$, 237, 262, 293-294, 351
music performance anxiety, $50,61,69$, 272,335-336, 355
olfactory reference syndrome (ORS), 282, 288
personality and aggressive behavior, 263-264
pitch memory of amusiacs, $273,288,337$
post-traumatic stress of POWs, 360-361
rat-in-maze experiment, 72-73
recall of TV commercials, 432
restoring self-control when intoxicated, 433
rotating objects, view of, 540
shock treatment to learners (Milgram experiment), 146
shopping vehicle and judgment, 78, 207,384
sleep deprivation, 359
social interaction of mental patients, 330
spanking, parents who condone, 241, 362
stimulus reaction, 87-88
superstition survey, 192-193
susceptibility to hypnosis, 15-16, 244, 493-494
task deviations, 46-47
time required to complete a task, 330
"tip-of-the-tongue" phenomenon, 457
undergraduate problem drinking, 264
virtual reality hypnosis for pain, 318
visual search and memory, 398
water-level task, 46-47, 86

Religion applications:

belief in an afterlife, 242
belief in Bible, 41
marital status and religion, 475-476
political representation of religious groups, 469
politics and religion, 489-490
religious symbolism in TV commercials, 458

Safety applications. See also Health/ health care applications
hybrid cars, 488-489
underground tunnels, 208
School applications. See Education/ school applications

Sociological applications. See also Behavioral applications; Gender applications; Psychological applications
acquiring a pet, 193, 222, 242
family planning, 132-133
fieldwork methods, 108, 163, 490
genealogy research, 39-40
Generation Y's entitlement mentality, 528-529
Hite Report, 111
ideal height of mate, 516-517, 523, 530, 549-550
identical twins reared apart, 440
marital name change, 193, 223
mother's race and maternal age, 132-133
salary linked to height, 540
single-parent families, 361
social network usage, $2,9,16,18,139$
stereotyping deceptive and authentic news stories, 481
welfare workers, 146-148
Space science applications. See Astronomy/space science applications

Sports/exercise/fitness applications:

altitude effects on climbers, 438
baseball batting averages, 216
baseball batting averages vs. wins, 566-568
basketball shooting free throws, 162
bowler's hot hand, 421
drafting football quarterbacks, 20
drug testing of athletes, 492
elevation and baseball hitting performance, 96, 531-532
executives who cheat at golf, 143
exercise workout dropouts, 299
favorite sport, 317
football fourth down tactics, 539-540
football speed training, 264, 298
game performance of water polo
players, 504-505, 513-514, 521, 549, 560-561
golf ball specifications, 194
golf ball tests, 299
golfers' driving performance, 62-63, 98, 216-217, 410, 515, 530, 548
inflation pressure of footballs, 284
long-jump takeoff error, 572
marathon winning times, 570-571
massage, effect on boxers, 22, 530, 541,561
odds of winning a horse race, 164
parents' behavior at a gym meet, 243
physical activity of obese young adults, 237, 540
Play Golf America program, 317
point spreads of football games, 351
professional athlete salaries, 111
scouting a football free agent, 403
soccer goal target, 208
sports news on local TV
broadcasts, 566
sprint speed training, 20
student gambling on sports, 243
walking to improve health, 317

Travel applications. See also

Automotive/motor vehicle applications;
Aviation applications
cruise ship sanitation inspection, 51, 77, 82, 92, 217
hotels, ratings of five-star, 438
purchasing souvenirs, 490-491
travel manager salaries, 242
unleaded fuel costs, 237

Weather applications:

chance of rainfall, 129
rainfall and desert ants, 272, 560
rainfall estimation, 569
Texas droughts, 173-174

1 Statistics, Data, and Statistical Thinking

CONTENTS

1.1 The Science of Statistics

1.2 Types of Statistical Applications
1.3 Fundamental Elements of Statistics
1.4 Types of Data
1.5 Collecting Data: Sampling and Related Issues
1.6 The Role of Statistics in Critical Thinking and Ethics

Where We're Going

- Introduce the field of statistics (1.1)
- Demonstrate how statistics applies to real-world problems (1.2)
- Introduce the language of statistics and the key elements to any statistical problem (1.3)
- Differentiate between population and sample data (1.3)
- Differentiate between descriptive and inferential statistics (1.3)
- Identify the different types of data and data collection methods (1.4-1.5)
- Discover how critical thinking through statistics can help improve our quantitative literacy (1.6)

Statistics in Action Social Media Network UsageAre You Linked In?

The Pew Research Center, a nonpartisan organization funded by a Philadelphia-based charity, has conducted more than 100 surveys on Internet usage in the United States as part of the Pew Internet \& American Life Project (PIALP). In a recent report titled Social Media Update, 2013, the PIALP examined adults' (ages 18 and up) attitudes and behavior toward online social media networks. Regarded merely as a fun, online activity for high school and college students just a few years ago, social media now exert tremendous influence over the way people around the world-of all ages - get and share information. The five social media sites investigated in this report include Facebook, Twitter, Instagram, Pinterest, and LinkedIn. The Pew Research Center contacted 1,445 Internet users via landline telephone or cell phone for the survey.

Several of the many survey questions asked are provided here as well as the survey results:

- Social Networking:

When asked if they ever use an online social networking site, adults responded:

Yes	73%
No	27%

- Facebook Usage:

When Facebook users were asked how often they visit the social media site, they responded:

Several times a day	40%
About once a day	24%
$3-5$ days a week	10%
$1-2$ days a week	13%
Every few weeks	6%
Less often	7%

- Twitter Usage:

When asked if they ever use Twitter, adults responded:

Yes	18%
No	82%

- Overall Social Media Usage:

When asked about how many of the five social networking sites they use, adults responded:

0	22%
1	36%
2	23%
3	12%
4	5%
5	2%
(Average $=1.48$ sites)	

In the following "Statistics in Action Revisited" sections, we discuss several key statistical concepts covered in this chapter that are relevant to the Pew Internet \& American Life Project survey.

Statistics in Action Revisited

- Identifying the Population, Sample, and Inference (p. 9)
- Identifying the Data Collection Method and Data Type (p. 16)
- Critically Assessing the Ethics of a Statistical Study (p. 18)

1.1 The Science of Statistics

Abstract

What does statistics mean to you? Does it bring to mind batting averages, Gallup polls, unemployment figures, or numerical distortions of facts (lying with statistics!)? Or is it simply a college requirement you have to complete? We hope to persuade you that statistics is a meaningful, useful science whose broad scope of applications to business, government, and the physical and social sciences is almost limitless. We also want to show that statistics can lie only when they are misapplied. Finally, we wish to demonstrate the key role statistics plays in critical thinking-whether in the classroom, on the job, or in everyday life. Our objective is to leave you with the impression that the time you spend studying this subject will repay you in many ways.

The Random House College Dictionary defines statistics as "the science that deals with the collection, classification, analysis, and interpretation of information or data."

Thus, a statistician isn't just someone who calculates batting averages at baseball games or tabulates the results of a Gallup poll. Professional statisticians are trained in statistical science. That is, they are trained in collecting information in the form of data, evaluating the information, and drawing conclusions from it. Furthermore, statisticians determine what information is relevant in a given problem and whether the conclusions drawn from a study are to be trusted.

Statistics is the science of data. This involves collecting, classifying, summarizing, organizing, analyzing, presenting, and interpreting numerical and categorical information.

In the next section, you'll see several real-life examples of statistical applications that involve making decisions and drawing conclusions.

1.2 Types of Statistical Applications

"Statistics" means "numerical descriptions" to most people. Monthly housing starts, the failure rate of liver transplants, and the proportion of African-Americans who feel brutalized by local police all represent statistical descriptions of large sets of data collected on some phenomenon. (Later, in Section 1.4, we learn that not all data is numerical in nature.) Often the data are selected from some larger set of data whose characteristics we wish to estimate. We call this selection process sampling. For example, you might collect the ages of a sample of customers who shop for a particular product online to estimate the average age of all customers who shop online for the product. Then you could use your estimate to target the Web site's advertisements to the appropriate age group. Notice that statistics involves two different processes: (1) describing sets of data and (2) drawing conclusions (making estimates, decisions, predictions, etc.) about the sets of data on the basis of sampling. So, the applications of statistics can be divided into two broad areas: descriptive statistics and inferential statistics.

Descriptive statistics utilizes numerical and graphical methods to look for patterns in a data set, to summarize the information revealed in a data set, and to present that information in a convenient form.

Inferential statistics utilizes sample data to make estimates, decisions, predictions, or other generalizations about a larger set of data.

BIOGRAPHY FLORENCE NIGHTINGALE (1820-1910)

The Passionate Statistician
In Victorian England, the "Lady of the Lamp" had a mission to improve the squalid field hospital conditions of the British army during the Crimean War. Today, most historians consider Florence Nightingale to be the founder of the nursing profession. To convince members of the British Parliament of the need for supplying nursing and medical care to soldiers in the field, Nightingale compiled massive amounts of data from army files. Through a remarkable series of graphs (which included the first pie chart), she demonstrated that most of the deaths in the war either were due to illnesses contracted outside the battlefield or occurred long after battle action from wounds that went untreated. Florence Nightingale's compassion and self-sacrificing nature, coupled with her ability to collect, arrange, and present large amounts of data, led some to call her the Passionate Statistician.

Although we'll discuss both descriptive and inferential Statistics in the chapters that follow, the primary theme of the text is inference.

Let's begin by examining some studies that illustrate applications of statistics.
Study 1.1 "Best-Selling Girl Scout Cookies" (Source: www.girlscouts.org)
Since 1917, the Girl Scouts of America have been selling boxes of cookies. Currently, there are 12 varieties for sale: Thin Mints, Samoas, Lemonades, Tagalongs, Do-si-dos, Trefoils,

Figure 1.1
MINITAB graph of best-selling Girl Scout cookies (Based on www. girlscouts.org, 2011-12 sales.)

Savannah Smiles, Thanks-A-Lot, Dulce de Leche, Cranberry Citrus Crisps, Chocolate Chip, and Thank U Berry Much. Each of the approximately 150 million boxes of Girl Scout cookies sold each year is classified by variety.The results are summarized in Figure 1.1. From the graph, you can clearly see that the best-selling variety is Thin Mints (25%), followed by Samoas (19\%) and Tagalongs (13\%). Since the figure describes the various categories of boxes of Girl Scout cookies sold, the graphic is an example of descriptive statistics.

Study 1.2 "Are Action Video Game Players Better than Non-gamers at Complex, Divided Attention Tasks?" (Source: Human Factors, Vol. 56, No. 31, May 2014)

Researchers at the Universities of Illinois (Urbana-Champaign) and Central Florida conducted a study to determine whether video game players are better than non-video game players at crossing the street when presented with distractions. Each in a sample of 60 college students was classified as a video game player or a non-gamer. Participants entered a street crossing simulator and were asked to cross a busy street at an unsigned intersection. The simulator was designed to have cars traveling at various high rates of speed in both directions. During the crossing, the students also performed a memory task as a distraction. The researchers found no differences in either the street crossing performance or memory task score of video game players and non-gamers. "These results," say the researchers, "suggest that action video game players [and non-gamers] are equally susceptible to the costs of dividing attention in a complex task." Thus, inferential statistics was applied to arrive at this conclusion.

Study 1.3 "Does Rudeness Really Matter in the Workplace?" (Source: Academy of Management Journal, Oct. 2007)

Previous studies have established that rudeness in the workplace can lead to retaliatory and counterproductive behavior. However, there has been little research on how rude behaviors influence a victim's task performance. Consider a study where college students enrolled in a management course were randomly assigned to one of two experimental conditions: rudeness condition (45 students) and control group (53 students). Each student was asked to write down as many uses for a brick as possible in five minutes; this value (total number of uses) was used as a performance measure for each student. For those students in the rudeness condition, the facilitator displayed rudeness by berating the students in general for being irresponsible and unprofessional (due to a late-arriving confederate). No comments were made about the late-arriving confederate for students in the control group. As you might expect, the researchers discovered that the performance levels for students in the rudeness condition were generally lower than the performance levels for students in the control group; thus, they concluded that rudeness in the workplace negatively affects job performance. As in Study 1.2, this study is an example of the use of inferential statistics. The researchers used data collected on 98 college students in a simulated work environment to make an inference about the performance levels of all workers exposed to rudeness on the job.

These studies provide three real-life examples of the uses of statistics. Notice that each involves an analysis of data, either for the purpose of describing the data set (Study 1.1) or for making inferences about a data set (Studies 1.2 and 1.3).

1.3 Fundamental Elements of Statistics

Statistical methods are particularly useful for studying, analyzing, and learning about populations of experimental units.

An experimental (or observational) unit is an object (e.g., person, thing, transaction, or event) about which we collect data.

A population is a set of all units (usually people, objects, transactions, or events) that we are interested in studying.

For example, populations may include (1) all employed workers in the United States, (2) all registered voters in California, (3) everyone who is afflicted with AIDS, (4) all the cars produced last year by a particular assembly line, (5) the entire stock of spare parts available at Southwest Airlines' maintenance facility, (6) all sales made at the drive-in window of a McDonald's restaurant during a given year, or (7) the set of all accidents occurring on a particular stretch of interstate highway during a holiday period. Notice that the first three population examples (1-3) are sets (groups) of people, the next two (4-5) are sets of objects, the next (6) is a set of transactions, and the last (7) is a set of events. Notice also that each set includes all the units in the population.

In studying a population, we focus on one or more characteristics or properties of the units in the population. We call such characteristics variables. For example, we may be interested in the variables age, gender, and number of years of education of the people currently unemployed in the United States.

A variable is a characteristic or property of an individual experimental (or observational) unit in the population.

The name variable is derived from the fact that any particular characteristic may vary among the units in a population.

In studying a particular variable, it is helpful to be able to obtain a numerical representation for it. Often, however, numerical representations are not readily available, so measurement plays an important supporting role in statistical studies. Measurement is the process we use to assign numbers to variables of individual population units. We might, for instance, measure the performance of the president by asking a registered voter to rate it on a scale from 1 to 10 . Or we might measure the age of the U.S. workforce simply by asking each worker, "How old are you?" In other cases, measurement involves the use of instruments such as stopwatches, scales, and calipers.

If the population you wish to study is small, it is possible to measure a variable for every unit in the population. For example, if you are measuring the GPA for all incoming first-year students at your university, it is at least feasible to obtain every GPA. When we measure a variable for every unit of a population, it is called a census of the population. Typically, however, the populations of interest in most applications are much larger, involving perhaps many thousands, or even an infinite number, of units. Examples of large populations are those following the definition of population above, as well as all graduates of your university or college, all potential buyers of a new iPhone, and all pieces of first-class mail handled by the U.S. Post Office. For such populations, conducting a census would be prohibitively time consuming or costly. A reasonable alternative would be to select and study a subset (or portion) of the units in the population.

Figure 1.2
A sample of voter registration cards for all registered voters

A sample is a subset of the units of a population.

For example, instead of polling all 145 million registered voters in the United States during a presidential election year, a pollster might select and question a sample of just 1,500 voters. (See Figure 1.2.) If he is interested in the variable "presidential preference," he would record (measure) the preference of each vote sampled.

After the variables of interest for every unit in the sample (or population) are measured, the data are analyzed, either by descriptive or inferential statistical methods. The pollster, for example, may be interested only in describing the voting patterns of the sample of 1,500 voters. More likely, however, he will want to use the information in the sample to make inferences about the population of all 145 million voters.

A statistical inference is an estimate, prediction, or some other generalization about a population based on information contained in a sample.

That is, we use the information contained in the smaller sample to learn about the larger population.* Thus, from the sample of 1,500 voters, the pollster may estimate the percentage of all the voters who would vote for each presidential candidate if the election were held on the day the poll was conducted, or he might use the results to predict the outcome on election day.

[^0]
Example

Key Elements of a
 Statistical Problem-Ages of Broadway Ticketbuyers

Problem According to Variety (Jan. 10, 2014), the average age of Broadway ticketbuyers is 42.5 years. Suppose a Broadway theatre executive hypothesizes that the average age of ticketbuyers to her theatre's plays is less than 42.5 years. To test her hypothesis, she samples 200 ticketbuyers to her theatre's plays and determines the age of each.
a. Describe the population.
b. Describe the variable of interest.
c. Describe the sample.
d. Describe the inference.

Solution

a. The population is the set of all units of interest to the theatre executive, which is the set of all ticketbuyers to her theatre's plays.
b. The age (in years) of each ticketbuyer is the variable of interest.
c. The sample must be a subset of the population. In this case, it is the 200 ticketbuyers selected by the executive.
d. The inference of interest involves the generalization of the information contained in the sample of 200 ticketbuyers to the population of all her theatre's ticketbuyers. In particular, the executive wants to estimate the average age of the ticketbuyers to her theatre's plays in order to determine whether it is less than 42.5 years. She might accomplish this by calculating the average age of the sample and using that average to estimate the average age of the population.

Look Back A key to diagnosing a statistical problem is to identify the data set collected (in this example, the ages of the 200 ticketbuyers) as a population or a sample.

Now Work Exercise 1.13

Example 1.2

Key Elements of a Statistical ProblemPepsi vs. Coca-Cola

Problem "Cola wars" is the popular term for the intense competition between CocaCola and Pepsi displayed in their marketing campaigns, which have featured movie and television stars, rock videos, athletic endorsements, and claims of consumer preference based on taste tests. Suppose, as part of a Pepsi marketing campaign, 1,000 cola consumers are given a blind taste test (i.e., a taste test in which the two brand names are disguised). Each consumer is asked to state a preference for brand A or brand B.
a. Describe the population.
b. Describe the variable of interest.
c. Describe the sample.
d. Describe the inference.

Solution

a. Since we are interested in the responses of cola consumers in a taste test, a cola consumer is the experimental unit. Thus, the population of interest is the collection or set of all cola consumers.
b. The characteristic that Pepsi wants to measure is the consumer's cola preference, as revealed under the conditions of a blind taste test, so cola preference is the variable of interest.
c. The sample is the 1,000 cola consumers selected from the population of all cola consumers.
d. The inference of interest is the generalization of the cola preferences of the 1,000 sampled consumers to the population of all cola consumers. In particular, the preferences of the consumers in the sample can be used to estimate the percentages of cola consumers who prefer each brand.

Look Back In determining whether the study is inferential or descriptive, we assess whether Pepsi is interested in the responses of only the 1,000 sampled customers (descriptive statistics) or in the responses of the entire population of consumers (inferential statistics).

■ Now Work Exercise 1.16b

The preceding definitions and examples identify four of the five elements of an inferential statistical problem: a population, one or more variables of interest, a sample, and an inference. But making the inference is only part of the story; we also need to know its reliability - that is, how good the inference is. The only way we can be certain that an inference about a population is correct is to include the entire population in our sample. However, because of resource constraints (i.e., insufficient time or money), we usually can't work with whole populations, so we base our inferences on just a portion of the population (a sample). Thus, we introduce an element of uncertainty into our inferences. Consequently, whenever possible, it is important to determine and report the reliability of each inference made. Reliability, then, is the fifth element of inferential statistical problems.

The measure of reliability that accompanies an inference separates the science of statistics from the art of fortune-telling. A palm reader, like a statistician, may examine a sample (your hand) and make inferences about the population (your life). However, unlike statistical inferences, the palm reader's inferences include no measure of reliability.

Suppose, like the theatre executive in Example 1.1, we are interested in the error of estimation (i.e., the difference between the average age of a population of ticketbuyers and the average age of a sample of ticketbuyers). Using statistical methods, we can determine a bound on the estimation error. This bound is simply a number that our estimation error (the difference between the average age of the sample and the average age of the population) is not likely to exceed. We'll see in later chapters that this bound is a measure of the uncertainty of our inference. The reliability of statistical inferences is discussed throughout this text. For now, we simply want you to realize that an inference is incomplete without a measure of its reliability.

A measure of reliability is a statement (usually quantitative) about the degree of uncertainty associated with a statistical inference.

Let's conclude this section with a summary of the elements of descriptive and of inferential statistical problems and an example to illustrate a measure of reliability.

Four Elements of Descriptive Statistical Problems

1. The population or sample of interest
2. One or more variables (characteristics of the population or sample units) that are to be investigated
3. Tables, graphs, or numerical summary tools
4. Identification of patterns in the data

Five Elements of Inferential Statistical Problems

1. The population of interest
2. One or more variables (characteristics of the population units) that are to be investigated
3. The sample of population units
4. The inference about the population based on information contained in the sample
5. A measure of the reliability of the inference

Example 1.3

Reliability of an Inference-Pepsi vs. Coca-Cola

Problem Refer to Example 1.2, in which the preferences of 1,000 cola consumers were indicated in a taste test. Describe how the reliability of an inference concerning the preferences of all cola consumers in the Pepsi bottler's marketing region could be measured.

Solution When the preferences of 1,000 consumers are used to estimate those of all consumers in a region, the estimate will not exactly mirror the preferences of the population. For example, if the taste test shows that 56% of the 1,000 cola consumers preferred Pepsi, it does not follow (nor is it likely) that exactly 56% of all cola drinkers in the region prefer Pepsi. Nevertheless, we can use sound statistical reasoning (which we'll explore later in the text) to ensure that the sampling procedure will generate estimates that are almost certainly within a specified limit of the true percentage of all cola consumers who prefer Pepsi. For example, such reasoning might assure us that the estimate of the preference for Pepsi is almost certainly within 5% of the preference of the population. The implication is that the actual preference for Pepsi is between 51% [i.e., $(56-5) \%$] and 61% [i.e., $(56+5) \%$]-that is, $(56 \pm 5) \%$. This interval represents a measure of the reliability of the inference.

Look Ahead The interval 56 ± 5 is called a confidence interval, since we are confident that the true percentage of cola consumers who prefer Pepsi in a taste test falls into the range (51, 61). In Chapter 7, we learn how to assess the degree of confidence (e.g., a 90% or 95% level of confidence) in the interval.

Statistics in Action Revisited Identifying the Population, Sample, and Inference

Consider the 2013 Pew Internet \& American Life Project survey on social networking. In particular, consider the survey results on the use of social networking sites like Facebook. The experimental unit for the study is an adult (the person answering the question), and the variable measured is the response ("yes" or "no") to the question.

The Pew Research Center reported that 1,445 adult Internet users participated in the study. Obviously, that number is not all of the adult Internet users in the United States. Consequently, the 1,445 responses represent a sample selected from the much larger population of all adult Internet users.

Earlier surveys found that 55% of adults used an online social networking site in 2006 and 65% in 2008. These
are descriptive statistics that provide information on the popularity of social networking in past years. Since 73% of the surveyed adults in 2013 used an online social networking site, the Pew Research Center inferred that usage of social networking sites continues its upward trend, with more and more adults getting online each year. That is, the researchers used the descriptive
 statistics from the sample to make an inference about the current population of U.S. adults' use of social networking.

1.4 Types of Data

You have learned that statistics is the science of data and that data are obtained by measuring the values of one or more variables on the units in the sample (or population). All data (and hence the variables we measure) can be classified as one of two general types: quantitative data and qualitative data.

Quantitative data are data that are measured on a naturally occurring numerical scale.* The following are examples of quantitative data:

1. The temperature (in degrees Celsius) at which each piece in a sample of 20 pieces of heat-resistant plastic begins to melt
[^1]
[^0]: *The terms population and sample are often used to refer to the sets of measurements themselves as well as to the units on which the measurements are made. When a single variable of interest is being measured, this usage causes little confusion. But when the terminology is ambiguous, we'll refer to the measurements as population data sets and sample data sets, respectively.

[^1]: *Quantitative data can be subclassified as either interval data or ratio data. For ratio data, the origin (i.e., the value 0) is a meaningful number. But the origin has no meaning with interval data. Consequently, we can add and subtract interval data, but we can't multiply and divide them. Of the four quantitative data sets listed as examples, (1) and (3) are interval data while (2) and (4) are ratio data.

